Exercise 68

The accompanying figure shows a rectangle inscribed in an isosceles right triangle whose hypotenuse is 2 units long.
a. Express the y-coordinate of P in terms of x. (You might start by writing an equation for the line $A B$.)
b. Express the area of the rectangle in terms of x.

Solution

Because the triangle is isosceles, the two legs have the same length L.

And since the triangle is a right triangle, the Pythagorean theorem applies.

$$
\begin{gathered}
L^{2}+L^{2}=2^{2} \\
2 L^{2}=4 \\
L^{2}=2 \\
L=\sqrt{2}
\end{gathered}
$$

Now the height of B can be determined using the Pythagorean theorem again.

$$
\begin{gathered}
1^{2}+h^{2}=(\sqrt{2})^{2} \\
1+h^{2}=2 \\
h^{2}=1 \\
h=1
\end{gathered}
$$

Two points on line $A B$ are $(0,1)$ and $(1,0)$, so the equation of this line is

$$
y=1-x .
$$

This is the y-coordinate of P. The area of the rectangle is the product of its width and height.

$$
\begin{aligned}
A & =l w \\
& =(x+x)(y) \\
& =2 x y \\
& =2 x(1-x) \\
& =2 x-2 x^{2}
\end{aligned}
$$

